¿Qué es la radiación cósmica de fondo?
¿Qué es la materia oscura?
¿Qué es la radiación cósmica de fondo?
Es una radiación de microondas antiquísima que permea todo el universo, y que se considera como los rescoldos que quedaron después de la Gran Explosión. Fue descubierta accidentalmente por dos astrónomos de los Laboratorios Bell, Arno Penzias y Robert Wilson. Sus medidas, combinadas con el descubrimiento de Hubble de que las galaxias se alejan de nosotros, son una fuerte evidencia para la teoría de la Gran Explosión.
Imagen del WMAP de la anisotropía de la temperatura del CMB |
La radiación de fondo de microondas (en inglés: cosmic microwave background o CMB) es isótropa hasta una parte entre 105: las variaciones del valor eficaz son sólo 18 µK.1 El espectrofotómetro FIRAS (en inglés The Far-Infrared Absolute Spectrophotometer) en el satélite COBE de la NASA ha medido cuidadosamente el espectro de la radiación de fondo del microondas. El FIRAS comparó el CMB con un cuerpo negro de referencia y no se pudo ver ninguna diferencia en sus espectros. Cualquier desviación del cuerpo negro que pudiera seguir estando sin detectar en el espectro del CMB sobre el rango de longitudes de onda desde 0,5 a 5 mm tendría que tener un valor de unas 50 partes por millón del pico de brillo del CMB. Esto hizo del espectro del CMB el cuerpo negro medido de manera más precisa en la naturaleza.
Esta radiación es una predicción del modelo del Big Bang, ya que según este modelo, el universo primigenio era un plasma compuesto principalmente por electrones, fotones y bariones (protones y neutrones). Los fotones estaban constantemente interactuando con el plasma mediante la dispersión Thomson. Los electrones no se podían unir a los protones y otros núcleos atómicos para formar átomos porque la energía media de dicho plasma era muy alta, por lo que los electrones interactuaban constantemente con los fotones mediante el proceso conocido como dispersión Compton. A medida que el universo se fue expandiendo, el enfriamiento adiabático (del que el corrimiento al rojo cosmológico es un síntoma actual) causado porque el plasma se enfrie hasta que sea posible que los electrones se combinen con protones y formen átomos de hidrógeno. Esto ocurrió cuando esta alcanzó los 3000 K, unos 380000 años después del Big Bang. A partir de ese momento, los fotones pudieron viajar libremente a través del espacio sin rozar(sin llegar a unirse) con los electrones dispersos. Este fenómeno es conocido como Era de la recombinación y descomposición, la radiación de fondo de microondas es precisamente el resultado de ese periodo. Al irse expandiendo el universo, esta radiación también fue disminuyendo su temperatura, lo cual explica por qué hoy en día es sólo de unos 2,7 K. La radiación de fondo es el ruido que hace el universo. Se dice que es el eco que proviene del inicio del universo, o sea, el eco que quedó de la gran explosión que dio origen al universo.
Los fotones han continuado enfriándose desde entonces, actualmente han caído a 2,725 K y su temperatura continuará cayendo según se expanda el Universo. De la misma manera, la radiación del cielo que medimos viene de una superficie esférica, llamada superficie de la última dispersión, en la que los fotones que se descompusieron en la interacción con materia en el Universo primigenio, hace 13.700 millones de años, están observándose actualmente en la Tierra. El Big Bang sugiere que el fondo de radiación cósmico rellena todo el espacio observable y que gran parte de la radiación en el Universo está en el CMB, que tiene una fracción de aproximadamente 5·10-5 de la densidad total del Universo.
Dos de los grandes éxitos de la teoría del Big Bang son sus predicciones de este espectro de cuerpo negro casi perfecto y su predicción detallada de las anisotropías en el fondo cósmico de microondas. El reciente WMAP ha medido precisamente estas anisotropías sobre el cielo por completo a escalas angulares de 0,2°. Estas se pueden utilizar para estimar los parámetros del Modelo Lambda-CDM estándar del Big Bang. Alguna información, como la forma del Universo, se puede obtener directamente del CMB, mientras otros, como la constante de Hubble, no están restringidos y tienen que ser inferidos de otras medidas.
¿Qué es la materia oscura?
Es una forma de materia hipotética que tiene más masa que la materia visible, pero que a diferencia de ésta última no interactúa con la fuerza electromagnética. Los científicos infieren su presencia porque tiene efectos gravitacionales en la materia visible. Por ejemplo, las velocidades de rotación de las galaxias, las velocidades orbitales de las galaxias dentro de los cúmulos y la distribución de las temperaturas de los gases de las galaxias apuntan a que tiene que haber algo allí algo más. Hay más materia en los cúmulos de galaxias de la que podríamos esperar de las galaxias y el gas caliente que podemos ver. Al parecer, el 30% del universo está compuesto de materia oscura. Descubrir su naturaleza es una de las metas más importantes de la astronomía moderna.
De acuerdo con las observaciones actuales (2010) de estructuras mayores que una galaxia, así como la cosmología del Big Bang, la materia oscura constituye del orden del 21% de la masa del Universo observable y la energía oscura el 70%.
La materia oscura fue propuesta por Fritz Zwicky en 1933 ante la evidencia de una "masa no visible"2 que influía en las velocidades orbitales de las galaxias en los cúmulos. Posteriormente, otras observaciones han indicado la presencia de materia oscura en el universo: estas observaciones incluyen la citada velocidad de rotación de las galaxias, las lentes gravitacionales de los objetos de fondo por los cúmulos de galaxias, tales como el Cúmulo Bala (1E 0657-56) y la distribución de la temperatura del gas caliente en galaxias y cúmulos de galaxias.
La materia oscura también juega un papel central en la formación de estructuras y la evolución de galaxias y tiene efectos medibles en la anisotropía de la radiación de fondo de microondas. Todas estas pruebas sugieren que las galaxias, los cúmulos de galaxias y todo el Universo contiene mucha más materia que la que interactúa con la radiación electromagnética: lo restante es llamado "el componente de materia oscura".
La composición de la materia oscura se desconoce, pero puede incluir neutrinos ordinarios y pesados, partículas elementales recientemente postuladas como los WIMPs y los axiones, cuerpos astronómicos como las estrellas enanas, los planetas (colectivamente llamados MACHO) y las nubes de gases no luminosos. Las pruebas actuales favorecen los modelos en que el componente primario de la materia oscura son las nuevas partículas elementales llamadas colectivamente materia oscura no bariónica.
El componente de materia oscura tiene bastante más masa que el componente "visible" del Universo. En el presente, la densidad de bariones ordinarios y la radiación en el Universo se estima que son equivalentes aproximadamente a un átomo de hidrógeno por metro cúbico de espacio. Sólo aproximadamente el 5% de la densidad de energía total en el Universo (inferido de los efectos gravitacionales) se puede observar directamente. Se estima que en torno al 23% está compuesto de materia oscura. El 72% restante se piensa que consiste de energía oscura, un componente incluso más extraño, distribuido difusamente en el espacio. Alguna materia bariónica difícil de detectar realiza una contribución a la materia oscura, aunque algunos autores defienden que constituye sólo una pequeña porción. Aun así, hay que tener en cuenta que del 5% de materia bariónica estimada (la mitad de ella todavía no se ha detectado) se puede considerar materia oscura bariónica: Todas las estrellas, galaxias y gas observable forman menos de la mitad de los bariones (que se supone debería haber) y se cree que toda esta materia puede estar distribuida en filamentos gaseosos de baja densidad formando una red por todo el universo y en cuyos nodos se encuentran los diversos cúmulos de galaxias. En mayo de 2008, el telescopio XMM-Newton de la agencia espacial europea ha encontrado pruebas de la existencia de dicha red de filamentos.
La determinación de la naturaleza de esta masa no visible es una de las cuestiones más importantes de la cosmología moderna y la física de partículas. Se ha puesto de manifiesto que los nombres "materia oscura" y la "energía oscura" sirven principalmente como expresiones de nuestra ignorancia, casi como los primeros mapas etiquetados como "Terra incógnita".
No hay comentarios:
Publicar un comentario